注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

wangyufeng的博客

祝愿BB 健康开心快乐每一天

 
 
 

日志

 
 

Improving the Efficiency of Genomic Selection  

2014-03-01 23:19:32|  分类: 数量遗传学 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
We investigate two approaches to increase the efficiency of phenotypic prediction from genome-wide markers, which is a key step for genomic selection (GS) in plant and animal breeding. The first approach is feature selection based on Markov blankets, which provide a theoretically-sound framework for identifying non-informative markers. Fitting GS models using only the informative markers results in simpler models, which may allow cost savings from reduced genotyping. We show that this is accompanied by no loss, and possibly a small gain, in predictive power for four GS models: partial least squares (PLS), ridge regression, LASSO and elastic net. The second approach is the choice of kinship coefficients for genomic best linear unbiased prediction (GBLUP). We compare kinships based on different combinations of centring and scaling of marker genotypes, and a newly proposed kinship measure that adjusts for linkage disequilibrium (LD).
We illustrate the use of both approaches and examine their performances using three real-world data sets from plant and animal genetics. We find that elastic net with feature selection and GBLUP using LD-adjusted kinships performed similarly well, and were the best-performing methods in our study.
Marco Scutari, Ian Mackay, David J. Balding
via:http://arxiv.org/abs/1301.2093
  评论这张
 
阅读(485)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017