注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

wangyufeng的博客

祝愿BB 健康开心快乐每一天

 
 
 

日志

 
 

SNVHMM: predicting single nucleotide variants from next generation sequencing  

2013-07-17 09:26:04|  分类: 生物信息分析 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
Background: The rapid development of next generation sequencing (NGS) technology provides a novel avenue for genomic exploration and research. Single nucleotide variants (SNVs) inferred from next generation sequencing are expected to reveal gene mutations in cancer. However, NGS has lower sequence coverage and poor SNVs detection capability in the regulatory regions of the genome. Post probabilistic based methods are efficient for detection of SNVs in high coverage regions or sequencing data with high depth. However, for data with low sequencing depth, the efficiency of such algorithms remains poor and needs to be improved.
Results: A new tool SNVHMM basing on a discrete hidden Markov model (HMM) was developed to infer the genotype for each position on the genome. We incorporated the mapping quality of each read and the corresponding base quality on the reads into the emission probability of HMM. The context information of the whole observation as well as its confidence were completely utilized to infer the genotype for each position on the genome in study. Therefore, more probability power can be gained over the Bayes based methods, which is very useful for SNVs detection for data with low sequencing depth. Moreover, our model was verified by testing against two sets of lobular breast tumor and Myelodysplastic Syndromes (MDS) data each. Comparing against a recently published SNVs calling algorithm SNVMix2, our model improved the performance of SNVMix2 largely when the sequencing depth is low and also outperformed SNVMix2 when SNVMix2 is well trained by large datasets.
Conclusions: SNVHMM can detect SNVs from NGS cancer data efficiently even if the sequence depth is very low. The training data size can be very small for SNVHMM to work. SNVHMM incorporated the base quality and mapping quality of all observed bases and reads, and also provides the option for users to choose the confidence of the observation for SNVs prediction.

Jiawen Bian, Chenglin Liu, Hongyan Wang, Jing Xing, Priyanka Kachroo and Xiaobo Zhou


  评论这张
 
阅读(520)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017