注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

wangyufeng的博客

祝愿BB 健康开心快乐每一天

 
 
 

日志

 
 

Transcriptome analysis of resistant and susceptible genotypes of Glycine tomentella during Phakopsora pachyrhizi infection reveals novel rust resistance genes.  

2010-10-29 14:27:24|  分类: 抗性基因 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL, 61821, USA.

Type:  Journal Article, Research Support, Non-U.S. Gov't

DOI: 10.1007/s00122-009-1258-0 DOI) system enables identification of digital entities.')" onmouseout="UnTip()" border="0"<

Abstract Highlight Terms These include Gene Ontology terms, Diseases, Genes/Proteins, Species and Chemicals.')" onmouseout="UnTip()" border="0"<
Gene Ontology(5) Diseases(1) Genes/Proteins(4) Species(4) Chemicals(1)
Soybean rust, caused by Phakopsora pachyrhizi, is a destructive foliar disease in nearly all soybean-producing countries. To identify genes controlling resistance to soybean rust, transcriptome profiling was conducted in resistant and susceptible Glycine tomentella genotypes triggered by P. pachyrhizi infection. Among 38,400 genes monitored using a soybean microarray, at 5% false discovery rate, 1,342 genes were identified exhibiting significant differential expression between uninfected and P. pachyrhizi-infected leaves at 12, 24, 48, and 72 h post-inoculation (hpi) in both rust-susceptible and rust-resistant genotypes. Differentially expressed genes were grouped into 12 functional categories, and among those, large numbers relate to basic plant metabolism. Transcripts for genes involved in the phenylpropanoid pathway were up-regulated early during rust infection. Similarly, genes coding for proteins related to stress and defense responses such as glutathione-S-transferases, peroxidases, heat shock proteins, and lipoxygenases were consistently up-regulated following infection at all four time points. Whereas, subsets of genes involved in cellular transport, cellular communication, cell cycle, and DNA processing were down-regulated. Quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) on randomly selected genes from the different categories confirmed these findings. Of differentially expressed genes, those associated with the flavonoid biosynthesis pathway as well as those coding for peroxidases and lipoxygenases were likely to be involved in rust resistance in soybean, and would serve as good candidates for functional studies. These findings provided insights into mechanisms underlying resistance and general activation of plant defense pathways in response to rust infection.
  评论这张
 
阅读(699)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017